LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034

M.Sc. DEGREE EXAMINATION - MATHEMATICS

FIRST SEMESTER - NOVEMBER 2018
16/17/18PMT1MCO3 - ORDINARY DIFFERENTIAL EQUATIONS

Date: 30-10-2018
Dept. No. \square Max. : 100 Marks
Time: 01:00-04:00

Answer all questions. Each question carries 20 marks.

1. (a) If u and v are solutions of $L(y(t))=a_{0}(t) y^{\prime \prime}+a_{1}(t) y^{\prime}+a_{2}(t) y=0$, prove that $W[u, v]=$ $k e^{-\int \frac{a_{1}(t)}{a_{0}(t)} d t}$ where k is a constant.
(OR)
(b) Prove that $x(t)=c_{1} x_{1}(t)+c_{2} x_{2}(t)$ is a solution of $L(y(t))=0$ where $x_{1}(t)$ and $x_{2}(t)$ are any two solutions of $L(y(t))=0$ and c_{1}, c_{2} are any two constants.
(c) Find the general solution of the equation $x^{\prime \prime \prime}(t)-x^{\prime}(t)=$ cost, using the method of variation of parameters.
(OR)
(d) Assume that $a_{0}(t), a_{1}(t), \ldots, a_{n}(t)$ and $b(t)$ are real valued continuous functions of t defined on the interval I of the real line R and that $a_{0}(t) \neq 0$ for all $t \in I$. Prove that the initial value problem $a_{0}(t) x^{(n)}+a_{1}(t) x^{(n-1)}+\cdots+a_{n}(t) x=b(t)$ with initial conditions $x\left(t_{0}\right)=\alpha_{1}, x^{\prime}\left(t_{0}\right)=\alpha_{2}$, $\ldots, x^{(n-1)}\left(t_{0}\right)=\alpha_{n}$ admits one and only one solution.
2. (a) State and prove Rodrigue's formula.
(OR)
(b) Prove that (i) $P_{l}(1)=1$, and (ii) $P_{l}^{\prime}(1)=l(l+1) / 2$.
(c) Use Frobenius method to solve $x^{2} \frac{d^{2} y}{d x^{2}}-3 x \frac{d y}{d x}+(3-x) y=0$.
(OR)
(d) Obtain the generating function for the Legendre polynomials.
3. (a) State and prove any two recurrence relations for Bessel's function.
(OR)
(b) When n is a non-zero integer, show that $J_{-n}(x)=(-1)^{n} J_{n}(x)$.
(c) Solve: $x^{2} \frac{d^{2} y}{d x^{2}}+x \frac{d y}{d x}+\left(x^{2}-n^{2}\right) y=0$ where $n \geq 0$.
(OR)
(d) State and prove the integral representation of Bessel's function.
4. (a) For the distinct parameters λ and μ, let x and y be the corresponding solutions of the Strum-Liouville problem respectively such that $[p W(x, y)]_{A}^{B}=0$. Prove that $\int_{A}^{B} r(s) x(s) y(s) d s=0$.
(OR)
(b) Using the method of successive approximations, solve the initial value problem $x^{\prime}(t)=-x(t)$, $x(0)=1, t \geq 0$.
(c) Let $G(t, s)$ be the Green's function. Prove that $x(t)$ is a solution of the equation $L(x(t))+f(t)=0$, $a \leq t \leq b$, if and only if $x(t)=\int_{a}^{b} G(t, s) f(s) d s$.
(OR)
(d) State and prove Picard's theorem for boundary value problem.
5. (a) Discuss the stability behavior of the system $x^{\prime}=-x$ at origin.
(OR)
(b) Show that the null solution of the equation $x^{\prime}=A(t) x$ is stable if and only if there exists a positive constant k such that $|\phi(t)| \leq k, t \geq t_{0}$.
(c) State and prove the two fundamental theorems on the stability of non-autonomous systems.
(OR)
(d) Discuss the stability of linear system $x^{\prime}=A x$ using Lyapunov's function.
